k^2+k=72

Simple and best practice solution for k^2+k=72 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for k^2+k=72 equation:



k^2+k=72
We move all terms to the left:
k^2+k-(72)=0
a = 1; b = 1; c = -72;
Δ = b2-4ac
Δ = 12-4·1·(-72)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{289}=17$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-17}{2*1}=\frac{-18}{2} =-9 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+17}{2*1}=\frac{16}{2} =8 $

See similar equations:

| 3x-3x-7=18 | | 2x+4x+6x-8x=60 | | X^-4x+7=0 | | 2+6(x-4)=3x-18=3x | | q^2-12q-12=-12 | | 4(3x-1)=5x+666 | | 0.5(2x+8)=30 | | r^2-5r-50=-50 | | -56=-v/4 | | 6=4/3(2)+b | | s^2-5s-30=-30 | | -56=-v4 | | 2(r-1)+4=5-4r | | 3p^-56p+12=0 | | -26=39+5x | | 4x-4=2x-19 | | -16x^2+56+72=0 | | 6(4x-8)=144 | | x+5=10x-10 | | g^2+19g+78=-6 | | 4(x−1)=2x-19 | | S=-16t^2+80+96 | | 4x+10+20-10=60 | | 3/4(12x-8)=39 | | 14=v/2+8 | | 4x+18=12x-22 | | x-0.22x-0.15(x-0.22)=132.60 | | 7x+2+4x+2+3x+6+4x+4+6x-8=112 | | -5/9x=15 | | A=2x-(-3)-7x+6x+2 | | r^2-3r-9=19 | | 2v+16=40 |

Equations solver categories